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Abstract 
 
 This article presents an assessment of alternative forms of the Green’s function for 
boundary element simulations of acoustic wave propagation in shallow water. It is assumed that 
the problem is two-dimensional, the source of acoustic disturbance is time-harmonic, the 
velocity of sound is constant and the medium in the absence of perturbations is quiescent. 
 Efficient implementations of the boundary element method for underwater acoustics 
should employ Green's functions which directly satisfy the boundary conditions on the free 
surface and the horizontal parts of the bottom boundary. In the present work, these Green's 
functions are constructed by using different techniques, namely the method of images, 
eigenfunction expansions and the Ewald’s method.  
 
Keywords: boundary element method, shallow water acoustics, Ewald's method, eigenfunction 
expansions 
 
1. Introduction 
 
 Increasing concern for coastal areas has, in recent years, focussed studies of ocean acoustic 
wave propagation on shallow water environments. The most common numerical techniques used 
to model underwater acoustic wave propagation are ray methods, normal mode methods and 
parabolic equation methods [1]. The boundary element method (BEM) can also be employed as 
an alternative technique, particularly for wave propagation over irregular bottom topography, in 
the frequency domain [2-6].  
 Since the acoustic domain is bounded by two reflecting surfaces (the ocean bottom and its 
free surface), efficient BEM implementations for underwater acoustics should employ Green's 
functions which satisfy the boundary conditions both on the free surface and the horizontal parts 
of the bottom boundary. These modified Green's functions may be constructed using the method 
of images, but this leads to very slowly convergent series [3-6].  
 A popular alternative to improve the convergence of the series is to construct a Green's 
function in the form of eigenfunction expansions, the so-called normal mode solution. The 
normal mode solution is also the sum of an infinite number of terms; however, if the evanescent 
modes are ignored and only the propagating modes are retained, the number of terms in the 
series becomes finite [3]. In spite of that, convergence problems still remain when the source and 
field points are located along the same vertical line [2-5].  
 Recent papers by Linton [7, 8] and Papanicolaou [9] discuss numerous mathematical 
techniques for accelerating slowly convergent series. They show that one powerful technique is 
the method of Ewald [10], which is capable of providing dramatic improvements in the speed of 
convergence. This method has been successfully implemented in the BEM context by Venakides 
et al. [11], for the calculation of electromagnetic scattering of photonic crystals. 
 In the present article, a two-dimensional model is studied as representative of coastal 
regions, which have little variation in the long shore direction. The Ewald’s method was derived 



and implemented for speeding-up the calculations of the eigenfunction expansion of the Green's 
function. The convergence properties, efficiency and accuracy of the different forms of the 
Green's function obtained by all the above techniques are compared with respect to the number 
of iterations, particularly close to singularities. The comparison accounts for source points 
located at a fixed position and field points moving along different vertical and horizontal lines.  
 
2. Governing equations of the problem 
 
 Consider the problem of acoustic wave propagation in a region Ω of infinite extent with 
irregular seabed topography [4, 5], shown in Figure 1. 
 
 
 

 
 
Figure 1: General ocean section for two-dimensional acoustic propagation problems in shallow 
water 
 
 
 If the medium in the absence of perturbations is quiescent, the velocity of sound is constant 
and the source of acoustic disturbance is time-harmonic, the problem is governed by the 
Helmholtz equation [12] 
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where ϕ is the velocity potential, αB  is the magnitude of the sound source αE  located at 
( )

αα ee yx , , S is the source point, located at (u,v), Nes is the number of sound sources, ( )SE ,αδ  is 
the Dirac delta generalised function and ck ω=  is the wave number, with ω the natural 
frequency and c the velocity of sound in the medium. 
 The problem is subject to the following boundary conditions: 
 
- at the free surface (ΓF) : 
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- at the bottom (ΓB) : 
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- Sommerfeld radiation condition at infinity : 
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in which X is the field point, located at (x,y), n is the outward normal and 1−=i . 
 According to Green’s second identity, Equation (1) can be transformed into the following 
boundary integral equation [13] 
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where Γ is equal to BF Γ∪Γ  and ( )XS,G  is the Green’s function. The function ( )Xn∂∂ϕ  
represents the normal derivative of the velocity potential. The coefficient C(S) depends on the 
boundary geometry at the source point S. It is noted that the Green’s function implicitly satisfies 
the Sommerfeld condition, therefore no discretization of the boundary at infinity is necessary. 
 Instead of using the Green’s function ( )XS,G  of the Helmholtz equation for a line source 
in a plane geometry, it is possible to adopt Green’s functions which directly satisfy the boundary 
conditions on FΓ  and horizontal parts of BΓ . Therefore, only the irregular parts of the bottom 
boundary need to be discretized. 
  
3. Modified Green's functions 
 
 The Green's functions ( )XS,G  for the problem mentioned in the previous section were 
developed by two different means. The first was the image method using multiple source point 
reflections, while the second used a series of eigenfunctions (normal modes) of the depth-
separated equation. An alternative form of the latter was also developed using Ewald’s method. 
 
3.1- Image method 
 
 Constructing a Green's function through the image method, using multiple source point 
reflections, leads to an infinite series which directly satisfies both boundary conditions, at the 
ocean bottom and free surface. However, the truncation of the series will lead to the exact 
satisfaction of only one boundary condition and the approximate satisfaction of the other.  
Therefore, two types of truncated series can be constructed. 
 The first type, the modified Green's function ( )XS,FG , exactly satisfies the boundary 
condition at the free surface, but its normal derivative produces a small non-zero value at the 
bottom boundary:  
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 The second type, the modified Green's function ( )XS,BG , exactly satisfies the boundary 
condition at the bottom, but the velocity potential produces a small non-zero value at the free 
surface:  
 

  ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

++= ∑
∞

=1

)1()1(
0

)1(
0 ,

4
1,

m
mB

B
B GkrHkrHiG XSXS  (5a) 

 

  ( ) ( ) ( ) ( ) ( ) ( )[ ])5()1(
0

)4()1(
0

)3()1(
0

)2()1(
01, B

m
B

m
B

m
B

m
m

mB krHkrHkrHkrHG +++−=XS  (5b) 

 
where the superscripts (jF) and (jB) identify the reflected source points (j = 1 to 4). 
 The distances from the field point X to the source point S and its reflections are denoted as 
r, )1( Fr , )1( Br , )( jF

mr  and )( jB
mr . These distances can be written as: 
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 Equations (6) and (7) are also used for BG , but the index F must be replaced by B and 
vice-versa. In these equations, FY  and BY  are the y co-ordinate of the free surface and bottom, 
respectively. 
 
3.2- Eigenfunction expansion 
 
 The Green's function ( )XS,MG  exactly satisfies the boundary conditions on the free 
surface and the bottom boundaries. This second series, in terms of normal modes, can be written 
as [14]: 
 

  ( ) ( )∑
∞

=

=
1

,1,
m

mMM G
H

G XSXS  (8a) 

 



  ( ) ( )[ ] ( )[ ]
xm

uxk

FymFymmM k
eyYkvYkG

xm

−
−−=

−−−

sinsin, XS  (8b) 

 
where H is the depth of the free surface ( )BF YY − . The parameters xmk  and ymk  are horizontal 
and vertical wavenumbers, respectively: 
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3.3- Ewald’s method 
 
 An alternative form of representing Equation (8) is [11] 
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 The underlying idea of Ewald’s representation is to split the integral in Equation (10) into 
two parts [9], 
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where the parameter b, which divides the integral in Equation (10), is chosen appropriately, 
taking account of the position of the source and field points. 
 In Ewald’s approach, the integrals in Equations (11a) and (11b) are manipulated in order to 
obtain a Green’s function involving rapidly decaying series of special functions, such as 
complementary error and exponential integral functions. Furthermore, the latter function satisfies 
simple recursive formulae and, hence, is easy to evaluate numerically. 
 Introducing expressions (9) into Equation (11a) and rearranging gives 
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Using the following identity for theta functions [15],  
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where the coefficients jmc  (j = 1 to 4) are of the form: 
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and substituting into Equation (12) gives 
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 Applying the Taylor expansion of the function tke
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where 1+nE  is the exponential integral function and the coefficients nC , 1a , 2a  and jma  are 
defined in the form: 
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 Equation (11b), in which the interval of integration ranges from b2 to ∞, can be calculated 
explicitly in terms of the complementary error function erfc(z): 
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 Therefore, the final expression of Ewald’s representation of the Green’s function (8) is: 
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where ( )XS,mEG  is given as: 
 
 

 ( )
( ) ( )sin sin

,
2m

ym F ym F
E

xm

k Y v k Y y
G

H k

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦= ×
−

S X  

 

   ( ) ( ) ( ) ( )
2 2

xm xmx u k x u k
xm xm

x u x u
e erfc b k e erfc b k

b b
− − − − −⎧ ⎫− −⎡ ⎤ ⎡ ⎤⎪ ⎪− + + − − +⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 

 

   ( ) 2 2 4

1 2
0 1

cos
( 1)

4 !

n n
jmj

n
n j

am k b E
n b

π
π

∞

+
= =

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  (20b) 

 
 
4. Analysis of coastal regions of constant depth 
 
4.1- Example  
 
 A problem of acoustic wave propagation in regions of two different constant depths (h = 
2.0 m and h = 10.0 m) was studied in order to compare the performance of the modified Green's 



function representations of the problem. Different situations were considered, in which the 
position of the source point S was fixed and the field point X varied along a vertical and a 
horizontal line. The sound velocity and frequency are taken to be 1500 m/s and 1000 Hz, 
respectively. 
 
4.2- Convergence tests  
 
 Figures 2 and 3 present the decay of the real part of the summations of ( )XS,

mFG , 
( )XS,

mMG  and ( )XS,
mEG  as a function of the number of terms, for source and field points 

located at fixed positions along the same horizontal line (figure 2) or the same vertical line 
(figure 3). 

Figure 2 shows that the series in terms of normal modes presents a very good convergence 
and the series utilising Ewald’s method dramatically improves the speed of convergence, with 
only 4 terms required, except for b = 0.1 in case (a), which required 9 terms. 
 When the co-ordinate x of the source and field points is the same, the exponential term of 
the function ( )XS,MG  is equal to one and convergence becomes slow, as can be observed in 
Figure 3. However, the function ( )XS,EG  still presents a very good convergence, with some 
dependence on the parameter b. 

Figures 4 and 5 present the number of iterations necessary for the functions (NiGF) FG , 
(NiGB) BG , (NiGM) MG  and  ( )EG b  to converge, for a source point S located at the positions 

(1.0,8.0) m and (1.0,5.0) m, respectively, and field point X moving along the same vertical line 
on which the source point is located, from y = 0.0 to y = 10.0 m. For the latter function, nine 
different values for the parameter b were employed. 
 It can be seen in these figures that the convergence of function GB improved when the field 
point was placed halfway along the depth. However, a large number of iterations were necessary 
for the first case with function GB, and for both cases with function GF, with over 100,000 terms 
required for convergence at some points. The number of iterations for function GM was around 
20,000 in both cases. A much faster convergence was produced by function GE, for all values of 
the parameter b. For values of b of 0.05 and 0.1, the number of iterations was less than 100 for 
all values of y. 
 Two types of singularities appear in this simple problem of acoustic propagation in a 
region of constant depth. The first is due to the coincidence of the source and field points at 
position (1.0,8.0) m in Figure 4 and (1.0,5.0) m in Figure 5. The second type of singularity, 
which appears at position (1.0,2.0) m in Figure 4, is due to the special function )( 2

21 baE  in 
Equation (17) going to infinity as the parameter 2a  in Expression (18b) tend to zero. Function 
GE with values of b of 0.05 and 0.1 required less than 100 iterations to converge even at the 
above singular points. 
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(a) Field point X close to source point S 
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(b) Field point X far from source point S 
 
 
Figure 2: Convergence of real part of the summations of ( )XS,

mFG , ( )XS,
mMG  and ( )XS,

mEG  
with number of terms, for S located at (1.0,1.3) m and (a) X located at (1.2,1.3) or (b) X located 
at (10.0,1.3) m (h = 2 m).  
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(a) Field point X close to source point S 
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(b) Field point X far from source point S 
 
 
Figure 3: Convergence of real part of the summations of ( )XS,

mFG , ( )XS,
mMG  and ( )XS,

mEG  
with number of terms, for S located at (1.0,1.1) m and (a) X located at (1.0,0.9) m or (b) X 
located at (1.0,0.2) m (h = 2 m).  
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(a) Functions ( )XS,FG , ( )XS,BG  and ( )XS,MG  
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(b) Function ( )XS,EG  using nine different values for the parameter b 
 
 
Figure 4: Number of iterations of the functions ( )XS,FG , ( )XS,BG , ( )XS,MG  and ( )XS,EG  for 
source point S located at (1.0,8.0) m and field points X located at x = 1.0 m, y from 0.0 to 10.0 m 
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(a) Functions ( )XS,FG , ( )XS,BG  and ( )XS,MG  
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(b) Function ( )XS,EG  using nine different values for the parameter b 
 
 
Figure 5: Number of iterations of the functions ( )XS,FG , ( )XS,BG , ( )XS,MG  and ( )XS,EG  for 
source point S located at (1.0,5.0) m and field points X located at x = 1.0 m, y from 0.0 to 10.0 m 
 



4.3- Comparison of the series 
 
 Figures 6 and 7 show the behaviour of the real part of the functions ( )XS,FG , ( )XS,MG  
and ( )XS,EG  in a region of constant depth of 2.0 m. For that, source points were placed at the 
fixed positions (7.0,1.3) m and (3.0,0.5) m, while field points were moved along the x- and y-
direction, respectively. For the latter function, three different values of the parameter b were 
used. 
 It is noticed that, for the present case, the real part of the functions ( )XS,FG , ( )XS,MG  
and ( )XS,EG , using b = 0.01, produced virtually the same results, confirming the validity of 
Ewald's representation. 
 In Figure 6, there is a quasi-singularity when the field point is at the position (7.0,0.8) m, 
while in Figure 7, quasi-singularities occur at positions (3.1,0.5) m and (3.1,1.5) m. These quasi-
singularities are well represented by the function ( )XS,EG  with b = 0.01, but not so for b = 0.1 
or b = 0.2. 
 The results obtained with the function ( )XS,EG  using different values of parameter b, 
depicted in Figures 6 and 7, are the same when the field points are far from the quasi-
singularities, except for the case b = 0.2 in Figure 7. 
 Figures 8 and 9 show the behaviour of the real part of the functions GF (Re(GF)), GB 
(Re(GB)), GM (Re(GM)) and GE (b), using different values for the parameter b, for source points 
located at the fixed positions (1.0,8.0) m and (1.0,5.0) m, respectively. The field points are 
located along the vertical line passing through the source point. 
 There are two singular points in Figure 8, owing to the coincidence of the source and field 
points at y = 8.0 m, and the parameter a2 being equal to zero at y = 2.0 m. Only one singularity is 
observed in Figure 9, at y = 5.0 m, when the source and field points coincide and the parameter 
a2 is equal to zero since, in the present case, the water depth YF is equal to 10.0 m. 
 Figure 10 shows a close-up of the behaviour of the real part of the function GE (b), using 
nine different values for the parameter b, for a source point located at the fixed position (1.0,5.0) 
m and field point located along the vertical line passing through the source point, from y = 4.0 to 
6.0 m. 
 The results obtained using all different values of parameter b are the same for values of y 
lower than 4.7 m or higher than 5.3 m. Nevertheless, the results close to the singularity clearly 
improve as the value of parameter b decreases. Hence, the choice of this parameter depends on 
the position of the source and field points in respect to the singularities of the problem under 
consideration. 
 Figure 11 depicts the behaviour of the real part of the functions GF (Re(GF)), GB (Re(GB)), 
GM (Re(GM)) and GE (b), using four different values for the parameter b, for a source point 
located at the fixed position (2.0,8.0) m and field point located along a different vertical line to 
that on which the source point is located. 
 It is noticed that, in this case, the real part of all the functions produced virtually the same 
results, with the exception of GE using b = 0.8.  
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 6: Real part of the functions ( )XS,FG , ( )XS,MG  and ( )XS,EG  along x-axis for S located 
at (7.0,1.3) m and X located at y = 0.8 m, x ranging from 2.0 m to 12.0 m (h = 2 m)  
 
 

 
 
 
Figure 7: Real part of the functions ( )XS,FG , ( )XS,MG  and ( )XS,EG  along y-axis for S located 
at (3.0,0.5) m and X located at x = 3.1 m, y ranging from 0.0 to 2.0 m (h = 2 m) 
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Figure 8: Real part of the functions ( )XS,FG , ( )XS,BG , ( )XS,MG  and ( )XS,EG  along y 
coordinate for S located at (1.0,8.0) m and X located at x = 1.0 m, y ranging from 0.0 to 10.0 m 
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Figure 9: Real part of the functions ( )XS,FG , ( )XS,BG , ( )XS,MG  and ( )XS,EG  along y 
coordinate for S located at (1.0,5.0) m and X located at x = 1.0 m, y ranging from 0.0 to 10.0 m 
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Figure 10: Real part of the functions ( )XS,EG  along y coordinate for S located at (1.0,5.0) m and 
X located at x = 1.0 m, y ranging from 4.0 to 6.0 m 
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Figure 11: Real part of the functions ( )XS,FG , ( )XS,BG , ( )XS,MG  and ( )XS,EG  along y 
coordinate for S located at (2.0,8.0) m and X located at x = 7.0 m, y ranging from 0.0 to 10.0 m 



5. Conclusions 
 
 Numerous mathematical techniques exist for accelerating slowly convergent series [7-9]. 
The Ewald’s method, one of the most efficient, was derived and implemented in this paper for 
speeding-up the calculations of the eigenfunction expansion of the Green's function for 
underwater acoustics used by the BEM.   
 It was shown that the Ewald’s method is the most accurate and efficient of all the methods 
implemented, both when the source and field points are located along the same vertical line or 
otherwise. The influence of the parameter b used to split the infinite integral was investigated, as 
well as the singular integral generated by the infinite series obtained by the Ewald’s method.  
 Results in Figures 4 and 5 demonstrate that higher values of the parameter b improve the 
speed of convergence of the series, while Figures 6 to 11 show that accuracy near singularities is 
improved by using lower values of b.  
 The main conclusion of this preliminary study is that the optimal value of the parameter b 
in Ewald’s method appears to be b = 0. 0001 near singularities and b = 0.1 away from them. 
Further studies will be conducted to verify these optimal values and to establish how close to the 
singularities it is necessary to switch from the higher to the lower value. 
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